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670 Editor’'s Comment

in sculpture, painting, architecture, ornament and design; its manifesta-
tions in organic and inorganic nature; its philosophical and mathematical
significance. Symmetry establishes a ridiculous and wonderful cousinship
between objects, phenomena and theories outwardly unrelated: terrestrial
magnetism, women’s veils, polarized light, natural selection, the theory of
groups, invariants and transformations, the work habits of bees in the
hive, the structure of space, vase designs, quantum physics, scarabs,
flower petals, X-ray interference patterns, cell division in sea urchins,
equilibrium positions of crystals, Romanesque cathedrals, snowflakes,
music, the theory of relativity. The structure of these relationships is
depicted by Weyl in a remarkable sweep. The style is not always easy;
neither is the subject. Nevertheless the book affords an entry into a pro-
found and fascinating subject which demonstrates, perhaps uniquely, the
working of the mathematical intellect, the evolution of intuitive concepts
into grand systems of abstract ideas, I have selected the first two of the
lectures—on bilateral and related s'ymmetries; I was tempted to give the
entire series. You will discover within a few pages why it was so hard to
resist the inclination.

. . . What immortal hand or eye,
Dare frame thy fearful symmetry? —WiLLiAM BLAKE

9  Symmetry
By HERMANN WEYL

BILATERAL SYMMETRY

IF I am not mistaken the word symmetry is used in our everyday language
in two meanings. In the one sense symmetric means something like well-
proportioned, well-balanced, and symmetry denotes that sort of concord-
ance of several parts by which they integrate into a whole. Beauty is
bound up with symmetry. Thus Polykleitos, who wrote a book on propor-
tion and whom the ancients praised for the harmonious perfection of his
sculptures, uses the word, and Diirer follows him in setting down a canon
of proportions for the human figure.! In this sense the idea is by no means
restricted to spatial objects; the synonym “harmony” points more toward
its acoustical and musical than its geometric applications. Ebenmass is a
good German equivalent for the Greek symmetry; for like this it carries
also the connotation of “middle measure,” the mean toward which the
virtuous should strive in their actions according to Aristotle’s Nico-
machean Ethics, and which Galen in De temperamentis describes as that
state of mind which is equally removed from both extremes: ovupuerpor
dmep éxarépov T@v dxpov dméxer.

The image of the balance provides a natural link to the second sense in
which the word symmetry is used in modern times: bilateral symmetry,
the symmetry of left and right, which is so conspicuous in the structure
of the higher animals, especially the human body. Now this bilateral sym-
metry is a strictly geometric and, in contrast to the vague notion of
symmetry discussed before, an absolutely precise concept. A body, a
spatial configuration, is symmetric with respect to a given plane E if it is

! Diirer, Vier Biicher von menschlicher Proportion, 1528. To be exact, Diirer him-
self does not use the word symmetry, but the “authorized” Latin translation by his
friend Joachim Camerarius (1532) bears the title De symmetria partium. To Poly-
kleitos the statement is ascribed (mepl Pelomouikav, 1v, 2) that “the employment of
a great many numbers would almost engender correctness in sculpture.” See also
Herbert Senk, Au sujet de l'expression ovpperplia dans Diodore 1, 98, 5-9, in
Chronique d’Egypte 26 (1951), pp. 63-66. Vitruvius defines: “Symmetry results from
proportion . . . Proportion is the commensuration of the various constituent parts
with the whole.” For a more elaborate modern attempt in the same direction see
George David Birkhoff, Aesthetic measure, Cambridge, Mass., Harvard University
Press, 1933, and the lectures by the same author on “A mathematical theory of

aesthetics and its applications to poetry and music,” Rice Institute Pamphlet, Vol. 19
(July, 1932), pp. 189-342.
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672 Hermann Weyl

carried into itself by reflection in E. Take any line ! perpendicular to E
and any point p on {: there cxists one and only one point p’ on [ which
has the same distance from E but lies on the other side. The point p’
coincides with p only if p is on E. Reflection in E is that mapping of space

FIGURE 1—Reflection in E.

upon itself, §: p— p’, that carries the arbitrary point p into this its
mirror image p’ with respect to E. A mapping is defined whenever a rule
is established by which every point p is associated with an image p’. An-
other example: a rotation around a perpendicular axis, say by 30°, carries
each point p of space into a point p” and thus defines a mapping. A figure
has rotational symmetry around an axis / if it is carried into itself by all
rotations around /. Bilateral symmetry appears thus as the first case of a
geometric concept of symmetry that refers to such operations as reflections
or rotations. Because of their complete rotational symmetry, the circle in
the plane, the sphere in space were considered by the Pythagoreans the
most perfect geometric figures, and Aristotle ascribed spherical shape to
the celestial bodies because any other would detract from their heavenly
perfection. It is in this tradition that a modern poet 2 addresses the Divine
Being as “Thou great symmetry”:

God, Thou great symmetry,

Who put a biting lust in me

From whence my sorrows spring,

For all the frittered days

That I have spent in shapeless ways
Give me one perfect thing.

Symmetry, as wide or as narrow as you may define its meaning, is one
idea by which man through the ages has tried to comprehend and create
order, beauty, and perfection.

The course these lectures will take is as follows.® First T will discuss

* Anna Wickham. “Envol,” from The Contemplative Quarry, Harcourt, Brace and
Co., 1921.

? [The first two lectures are given here. Lecture 3 deals with ornamental symmetry,
Lecture 4 with crystals and the general mathematical idea of symmetry. ED. |

Symmetry

bilateral symmetry in some
detail and its role in art as
well as organic and inorganic
nature. Then we shall gener-
alize this concept gradually, in
the direction indicated by our
example of rotational sym-
metry, first staying within the
confines of geometry, but then
going beyond these limits
through the process of mathe-
matical abstraction along a
road that will finally lead us
to a mathematical idea of
great generality, the Platonic
idea as it were behind all the
special appearances and ap-
plications of symmetry. To a
certain degree this scheme is
typical for all theoretic knowl-
edge: We begin with some
general but vague principle
(symmetry in the first sense),
then find an important case
where we can give that no-
tion a concrete precise mean-
ing (bilateral symmetry), and
from that case we gradually
rise again to generality, guided
more by mathematical con-
struction and abstraction than
by the mirages of philosophy;
and if we are lucky we end up
with an idea no less universal
than the one from which we
started. Gone may be much
of its emotional appeal, but it
has the same or even greater
unifying power in the realm
of thought and is exact in-
stead of vague.

I open the discussion on bi-
lateral symmetry by using this

FIGURE 2
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noble Greek sculpture from the fourth century B.c., the statue of a praying
boy (Figure 2), to let you feel as in a symbol the great significance of this
type of symmetry both for life and art. One may ask whether the aesthetic
value of symmetry depends on its vital value: Did the artist discover the
symmetry with which nature according to some inherent law has endowed
its creatures, and then copied and perfected what nature presented but in
imperfect realizations; or has the aesthetic value of symmetry an inde-
pendent source? I am inclined to think with Plato that the mathematical
idea is the common origin of both: the mathematical laws governing
nature are the origin of symmetry in nature, the intuitive realization of the
idea in the creative artist’s mind its origin in art; although I am ready to
admit that in the arts the fact of the bilateral symmetry of the human
body in its outward appearance has acted as an additional stimulus.
Of all ancient peoples the Sumerians seem to have been particularly
fond of strict bilateral or heraldic symmetry. A typical design on the
famous silver vase of King Entemena, who ruled in the city of Lagash
around 2700 B.c., shows a lion-headed eagle with spread wings en face,
each of whose claws grips a stag in side view, which in its turn is frontally
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FIGURE 3
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FIGURE 4

attacked by a lion (the stags in the upper design are replaced by goats in
the lower) (Figure 3). Extension of the exact symmetry of the eagle to
the other beasts obviously enforces their duplication. Not much later the
eagle is given two heads facing in either direction, the formal principle
of symmetry thus completely overwhelming the imitative principle of truth
to nature. This heraldic design can then be followed to Persia, Syria, later
to Byzantium, and anyone who lived before the First World War will
remember the double-headed eagle in the coats-of-arms of Czarist Russia
and the Austro-Hungarian monarchy.

Look now at this Sumerian picture (Figure 4). The two eagle-headed
men are nearly but not quite symmetric; why not? In plane geometry re-
flection in a vertical line / can also be brought about by rotating the plane
in space around the axis / by 180°. If you look at their arms you would
say these two monsters arise from each other by such rotation; the over-
lappings depicting their position in space prevent the plane picture from
having bilaterial symmetry. Yet the artist aimed at that symmetry by
giving both figures a half turn toward the observer and also by the
arrangement of feet and wings: the drooping wing is the right one in the
left figure, the left one in the right figure.

The designs on the cylindrical Babylonian seal stones are frequently
ruled by heraldic symmetry. { remember sceing in the collection of my
former colleague, the late Ernst Herzfeld, samples where for symmetry’s
sake not the head, but the lower bull-shaped part of a god’s body, rendered
in profile, was doubled and given four instead of two hind legs. Tn
Christian times one may see an analogy in certain representations of the
Eucharist as on this Byzantine platen (Figure 5). where two symmetric
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Christs are facing the disciples. But here symmetry is not complete and
has clearly more than formal significance, for Christ on one side breaks
the bread, on the other pours the wine.

Bétween Sumeria and Byzantium let me insert Persia: These enameled
sphinxes (Figure 6) are from Darius’ palace in Susa built in the days of
Marathon. Crossing the Aegean we find these floor patterns (Figure 7)
at the Megaron in Tiryns, late helladic about 1200 B.c. Who believes
strongly in historic continuity and dependence will trace the graceful
designs of marine life, dolphin and octopus, back to the Minoan culture
of Crete, the heraldic symmetry to oriental, in the last instance Sumerian,
influence. Skipping thousands of years we still see the same influences at
work in this plague (Figure 8) from the altar enclosure in the dome of
Torcello, Italy, eleventh century a.p. The peacocks drinking from a pine
well among vine leaves are an ancient Christian symbol of immortality,
the structural heraldic symmetry is oriental.

For in contrast to the orient, occidental art, like life itself, is inclined
to mitigate, to loosen, to modify, even to break strict symmetry. But
seldom is asymmetry merely the absence of symmetry. Even in asym-
metric designs one feels symmetry as the norm from which one deviates
under the influence of forces of non-formal character. I think the riders

FIGURE 5
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FIGURE 6

FIGURE 7
from the famous Etruscan Tomb of the Triclinium at Corneto (Figure 9)
provide a good example. | have already mentioned representations of the
Eucharist with Christ duplicated handing out bread and wine. The centrai
group, Mary flanked by two angels. in this mosaic of the Lord’s Ascension
(Figure 12) in the cathedral at Monreale, Sicily (twelfth century), has
almost pertect symmetry. [The band ornaments above and below the
mosaic will demand our attention in the second lecture.] The principle of
symmetry is somewhat less strictly observed in an earlier mosaic from San
Apollinare in Ravenna (Figure 10), showing Christ surrounded bv an
angelic guard of honor. For instance Mary in the Monrcale mosaic raises
both hands symmetrically, in the orans gesture; here only the right hands
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FIGURE 8

are raised. Asymmetry has made further inroads in the next picture
(Figure 11), a Byzantine relief ikon from San Marco, Venice. It is a
Deésis, and, of course, the two figures praying for mercy as the Lord
is about to pronounce the last judgment cannot be mirror images of each
other; for to the right stands his Virgin Mother, to the left John the
Baptist. You may also think of Mary and John the Evangelist on both
sides of the cross in crucifixions as examples of brcken symmetry.
Clearly we touch ground here where the precise geometric notion of
bilateral symmetry begins to dissolve into the vague notion of Ausge-
wogenheit, balanced design with which we started. “Symmetry,” says
Dagobert Frey in an article On the Problem of Symmetry in Art?
“signifies rest and binding, asymmetry motion and loosening, the one
order and law, the other arbitrariness and accident, the one formal rigidity
and constraint, the other life, play and freedom.” Wherever God or Christ
are represented as symbols for everlasting truth or justice they are given
in the symmetric frontal view, not in profile. Probably for similar reasons
public buildings and houses of worship, whether they are Greek temples
or Christian basilicas and cathedrals, are bilaterally symmetric. it is, how-

4 Studium Generale, p. 276.
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FIGURE 9

ever, true that not infrequently the two towers of Gothic cathedrals are
different, as for instance in Chartres. But in practically every case this
seems to be due to the history of the cathedral, namely to the fact that the
towers were built in different periods. It is understandable that a later
time was no longer satisfied with the design of an earlier period; hence
one may speak here of historic asymmetry. Mirror images occur where
there is a mirror, be it a lake reflecting a landscape or a glass mirror into
which a woman looks. Nature as well as painters make use of this motif.
I trust, examples will easily come to your mind. The one most familiar to
me, because I look at it in my study every day, is Hodler’s Lake of Silva-
plana.

While we are about to turn from art to nature, let us tarry a few minutes
and first consider what one may call the snathematical philosophy of left
and right. To the scientific mind there is no inner difference, no polarity
between left and right, as there is for instance in the contrast of male and
female, or of the anterior and posterior ends of an animal. It requires an
arbitrary act of choice to determine what is left and what is right. But
after it is made for one body it is determined for cvery body. I must try
to make this a little clearer. In space the distinction of left and right con-
cerns the orientation of a screw. If you speak of turning left you mean
that the sense in which you turn combined with the upward direction from
foot to head of your body forms a left screw. The daily rotation of the
carth together with the direction of its axis from South to North Pole is
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FIGURE 11

a left screw, it is a right screw if you give the axis the opposite dircction.
There are certain crystalline substances called optically active which be-
tray the inner asymmetry of their constitution by turning the polarization
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plane of polurized light sent through them either to the left or to the right;
by this, of course, we mean that the scnse in which the plane rotates
while the light travels in a definite direction, combined with that direction,
forms a left screw (or a right one, as the case may be). Hence when we
said above and now repeat in a terminology due to Leibniz, that left and
right are indiscernible, we want to express that the inner structure of space
does not permit us, except by arbitrary choice, to distinguish a left from
a right screw.

I wish to make this fundamental notion still more precise, for on it de-
pends the entire theory of relativity, which is but another aspect of sym-
metry. According to Euclid one can describe the structure of space by a
number of basic relations between points, such as ABC lie on a straight
line, ABCD lie in a plane, AB is congruent CD. Perhaps the best way of
describing the structure of space is the one Helmholtz adopted: by the

FIGURE 12
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single notion of congruence of figures. A mapping § of space associates
with every point p a point p’: p->p’. A pair of mappings S, & : p = p’,
p’ —> p, of which the one is the inverse of the other, so that if § carries p
into p’” then § carries p” back into p and vice versa, is spoken of as a pair

°B

A/w\

of one-to-one mappings or transformations. A transformation which pre-
serves the structure of space—and if we define this structure in the Helm-
holtz way, that would mean that it carries any two congruent figures into
two congruent ones—is called an automorphism by the mathematicians.
Leibniz recognized that this is the idea underlying the geometric concept
of similarity. An automorphism carries a figure into one that in Leibniz’
words is “indiscernible from it if each of the two figures is considered by
itself.” What we mean then by stating that left and right are of the same
essence is the fact that reflection in a plane is an automorphism.

Space as such is studied by geometry. But space is also the medium of
all physical occurrences. The structure of the physical world is revealed
by the general laws of nature. They are formulated in terms of certuin
basic quantities which are functions in space and time. We would con-
clude that the physical structure of space “contains a screw.,” to use a

D

FIGURE 13

FIGURE 14
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suggestive figure of speech, if these laws were not invariant throughout
with respect to reflection. Ernst Mach tells of the intellectual shock he re-
ceived when he learned as a boy that a magnetic needle is deflected in a
certain sense, to the left or to the right. if suspended paralle! to a wire
through which an electric current is sent in a definite direction (Figure
14). Since the whole geometric and physical configuration, including the
electric current and the south and north poles of the magnetic needle, to
all appearances. are symmetric with respect to the plane E laid through
the wire and the needle. the needle should react like Buridan’s ass between
equal bundles of hay and refuse to decide between left and right, just as
scales of equal arms with equal weights neither go down on their left nor
on their right side but stay horizontal. But appearances are sometimes
deceptive. Young Mach’s dilemma was the result of a too hasty assump-
tion concerning the effect of reflection in E on the electric current and
the positive and negative magnetic poles of the needle: while we know a
priori how geometric entities fare under reflection, we have to learn from
nature how the physical quantities behave. And this is what we find:
under reflection in the plane E the electric current preserves its direction,
but the magnetic south and north poles are interchanged. Of course this
way out, which re-establishes the equivalence of left and right, is possible
only because of the essential equality of positive and negative magnetism.
All doubts were dispelled when one found that the magnetism of the
needle has its origin in molecular electric currents circulating around the
needle’s direction; it is clear that under reflection in the plane E such
currents change the sense in which they flow.

The net result is that in all physics nothing has shown up indicating
an intrinsic difference of left and right. Just as all points and all directions
in space are equivalent, so are left and right. Position, direction, left and
right are relative concepts. In language tinged with theology this issue of
relativity was discussed at great length in a famous controversy between
Leibniz and Clarke. the latter a clergyman acting as the spokesman for
Newton.® Newton with his belief in absolute space and time considers
motion a proof of the creation of the world out of God’s arbitrary will.
for otherwise it would be inexplicable why matter moves in this rather
than in any other direction. 1 eibniz is loath to burden God with such de-
cisions as lack “sufficient reason.” Says he. “Under the assumption that
space be something in itself it is impossible to give a reason why God
should have put the bodies (without tampering with their mutual distances
and relative positions) just at this particular place and not somewhere
else: for instance, why He should not have arranged everything in the
opposite order by turning East and West about. If, on the other hand,

5 See G. W. Leibniz, Philosophische Schriften, ed. Gerhardt (Berlin 1875 seq.). viI,
pp. 352-440, in particulur Leibniz’ third letter, §5.
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space is nothing more than the spatial order and relation of things then
the two states supposed above, the actual one and its transposition, are
in no way different from each other . . . and therefore it is a quite in-
admissible question to ask why one state was preferred to the other.” By
pondering the problem of left and right Kant was first led to his concep-
tion of space and time as forms of intuition.® Kant’s opinion seems to
have been this: If the first creative act of God had been the forming of
a left hand then this hand, even at the time when it could be compared
to nothing else, had the distinctive character of left, which can only in-
tuitively but never conceptually be apprehended. Leibniz contradicts: Ac-
cording to him it would have made no difference if God had created a
“right” hand first rather than a “left” one. One must follow the world’s
creation a step further before a difference can appear. Had God, rather
than making first a left and then a right hand, started with a right hand
and then formed another right hand, He would have changed the plan of
the universe not in the first but in the second act, by bringing forth a hand
which was equally rather than oppositely oriented to the first-created
specimen.

Scientific thinking sides with Leibniz. Mythical thinking has always
taken the contrary view as is evinced by its usage of right and left as
symbols for such polar opposites as good and evil. You need only think
of the double meaning of the word right itself. In this detail from Michel-
angelo’s famous Creation of Adam from the Sistine Ceiling (Figure 15)
God’s right hand, on the right, touches life into Adam’s left.

People shake right hands. Sinisrer is the Latin word for left, and
heraldry still speaks of the left side of the shield as its sinister side. But
sinistrum is at the same time that which is evil, and in common English
only this figurative meaning of the Latin word survives.” Of the two male-
factors who were crucified with Christ, the one who goes with Him to
paradise is on His right. St. Matthew, Chapter 25, describes the last judg-
ment as follows: “And he shall set the sheep on his right hand but the
goats on the left. Then shall the King say unto them on his right hand,
Come ye, blessed of my Father, inherit the Kingdom prepared for you
from the foundation of the world. . . . Then he shall say also unto them
on the left hand, Depart from me. ye cursed, into everlasting fire, prepared
for the devil and his angels.”

I remember a lecture Heinrich Wolfflin once delivered in Zurich on
“Right and left in paintings”; together with an article on “The problem of
inversion (Umkehrung) in Raphael’s tapestry cartoons,” you now find it
printed in abbreviated form in his Gedanken zur Kunstgeschichte, 1941.

6 Besides his “Kritik der reinen Vernunft” sce especially §13 of the Prolegomena zu
einer jeden kiinftigen Metaphysik. . . .

71 am not unaware of the strange fact that as a ferminus technicus in the language
of the Roman augurs sinistrum had just the opposile meaning of propitious.

Symmietry 685

FIGURE 15

By a number of examples, as Raphael’s Sistine Madonna and Rembrandt’s
etching Landscape with the three trees, Woliflin tries to show that right in
painting has another Stimmungswert than left. Practically all methods of
reproduction interchange left and right, and it seems that former times
were much less sensitive than we are toward such inversion. (Even Rem-
brandt did not hesitate to bring his Descent from the Cross as a converse
etching upon the market.) Considering that we do a lot more reading
than the people, say, of the sixteenth century, this suggests the hypothesis
that the difference pointed out by Wofflin is connected with our habit of
reading from left to right. As far as I remember, he himself rejected this
as well as a number of other psychological explanations put forward in
the discussion after his lecture. The printed text concludes with the remark
that the problem “obviously has deep roots, roots which reach down to the
very foundations of our sensuous nature.” { for my part am disinclined
to take the matter that seriously.®

In science the belief in the equivalence of teft and right has been uacid
even in the face of certain biological facts presently to be menrioned which
seem to suggest their inequivalence even more strongly than does the de-
viation of the magnetic needle which shocked young Mach. The same

_8 Cf also A. Faistauer, “Links und rechis im Bilde,” Amicis. Jahrbuch der dster-
reichischen Galerie, 1926, p. 77; Julius v. Schlosser, “Intorno alla lettura dei yuadri.”

Critica 28, 1930, p. 72; Paul Oppé. “Right and left in Raphael's cartoons,” Journal of
the Warburg and Courtauld Institutes 7, 1944, p. $2.
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problem of equivalence arises with respect to past and future, which are
interchanged by inverting the direction of time, and with respect to posi-
tive and negative electricity ~In these cases, especially in the second, it is
perhaps clearer than for the pair left-right that a priori evidence is not
sufficient to settle the question; the empirical facts have to be consulted.
To be sure, the role which past and future play in our consciousness
would indicate their intrinsic difference-—the past knowable and unchange-
able, the future unknown and still alterable by decisions taken now—and
one would expect that this difference has its basis in the physical laws of
nature. But those laws of which we can boast a reasonably certain knowl-
edge are invariant with respect to the inversion of time as they are with
respect to the interchange of left and right. Leibniz made it clear that the
temporal modi past and future refer to the causal strucrure of the world.
Even if it is true that the exact “wave laws” formulated by quantum
physics are not altered by letting time flow backward, the metaphysical
idea of causation, and with it the one way character of time, may enter
physics through the statistical interpretation of those laws in terms of
probability and particles. Our present physical knowledge leaves us even
more uncertain about the equivalence or non-equivalence of positive and
negative electricity. It seems difficult to devise physical laws in which they
are not intrinsically alike; but the negative counterpart of the positively
charged proton still remains to be discovered.

This half-philosophical excursion was needed as a background for the
discussion of the left-right symmetry in nature; we had to understand that
the general organization of nature possesses that symmetry. But one will
not expect that any special object of nature shows it to perfection. Even
so, it is surprising to what extent it prevails. There must be a reason for
this, and it is not far to seek: a state of equilibrium is likely to be sym-
metric. More precisely, under conditions which determine a unique state
of equilibrium the symmetry of the conditions must carry over to the state
of equilibrium. Therefore tennis balls and stars are spheres. the earth
would be a sphere too if it did not rotate around an axis. The rotation
flattens it at the poles but the rotational or cylindrical symmetry around
its axis is preserved. The feature that needs explanation is, therefore, not
the rotational symmetry of its shape but the deviations from this sym-
metry as exhibited by the irregular distribution of land and water and
by the minute crinkles of mountains on its surface. It 1s for such reasons
that in his monograph on the left-right problem in zoology Wilhelm Lud-
wig says hardly a word about the origin of the bilateral symmetry pre-
vatling in the animal kingdom from the echinoderms upward, but in great
detail discusses all sorts of secondary asymmetries superimposed upon the
symmetrical ground plan.® 1 quote: “The human body like that of the

W, Ludwig, Rechts-links-Problem im Tierreich und beim Menschen, Berlin 1932,
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other vertebrates is basically built bilateral-symmetrically. All asymmetries
occurring are of secondary character, and the more important ones affect-
ing the inner organs are chiefly conditioned by the necessity for the in-
testinal tube to increase its surface out of proportion to the growth of the
body, which lengthening led to an asymmetric folding and rolling-up. And
in the course of phylogenetic evolution these first asymmetries concerning
the intestinal system with its appendant organs brought about asymmetries
in other organ systems.” It is well known that the heart of mammals is an
asymmetric screw, as shown by the schematic drawing of Figure 16.

FIGURE 16

If nature were all lawfulness then every phenomenon would share the
full symmetry of the universal laws of nature as formulated by the theory
of relativity. The mere fact that this is not so proves that contingency is an
essential feature of the world. Clarke in his controversy with Leibniz ad-
mitted the latter’s principle of sufficient reason but added that the sufficient
reason often lies in the mere will of God. I think, here Leibniz the ration-
alist 1s definitely wrong and Clarke on the right track. But it would have
been more sincere to deny the principle of sufficient reason altogether
instead of making God responsible for all that is unreason in the world.
On the other hand Leibniz was right against Newton and Clarke with his
insight into the principle of relativity. The truth as we see it today is this:
The laws of nature do not determine uniquely the one world that actually
exists, not even if one concedes that two worlds arising trom each other
by an automorphic transformation. i.e., by a transformation which pre-
serves the universal laws of nature, are to be considered the same world.

If for a lump of matter the overall symmetry inherent in the laws of
nature is limited by nothing but the accident of its position P then it will
assume the form of a sphere around the center P. Thus the lowest forms
of animals, small creatures suspended in water, are more or less spherical.
For forms fixed to the bottom of the ocean the direction of gravity is an
important factor, narrowing the set of symmetry operations from all rota-
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tions around the center P to all rotations about an axis. But for animals
capabhle of self-motion in water, air, or on land both the postero-anterior
direction in which their body moves and the direction of gravity are of
decisive influence. After determination of the antero-posterior, the dorso-
ventral, and thereby of the left-right axes, only the distinction between left
and right remains arbitrary, and at this stage no higher symmetry than
the bilateral type can be expected. Factors in the phylogenetic evolution
that tend to introduce inheritable differences between left and right are
likely to be held in check by the advantage an animal derives from the
bilateral formation of its organs of motion. cilia or muscles and limbs: in
case of their asymmetric development a screw-wise instead of a straight-
forward motion would naturally result. This may help to explain why
our limbs obey the law of symmetry more strictly than our inner organs.
Aristophanes in Plato’s Symposin tells a different story of how the tran-
sition tfrom spherical to bilateral symmetry came about. Originally, he
says, man was round, his back and sides forming a circle. To humble their
pride and might Zeus cut them into two and had Apollo turn their faces
and genitals around: and Zeus had threatened, “If they continue insolent
[ will split them again and they shall hop around on a single leg.”

The most striking examples of symmetry in the inorganic world are the
crystals. The gaseous and the crystalline are two clear-cut states of matter
which physics finds relatively easy to explain; the states in between these
two extremes, like the fluid and the plastic states, are somewhat less amena-
ble to theory. In the gaseous state molecules move freely around in space
with mutually independent random positions and vclocities. In the crystal-
line state atoms oscillate about positions of equilibrium as if they were
tied to them by elastic strings. These positions of equilibrium form a fixed
regular configuration in space.’0. . . While most of the thirtv-two geo-
metrically possible systems of crystal symmetry involve bilateral symmetry,
not all of them do. Where it is not involved we have the possibility of
so-called enantiomorph crystals which exist in a laevo- and dextro-form,
cach form being a mirror image of the other, like left and right hands. A
substunce which is opticaily active, f.e., turns the plane of polarized light
cither feft or right, can be expected o crystallize in such asymmetric forms.
if the faevo-torm exists in nuture one would assame that the dextro-form
exises likewise, aad ihat in the average both oceur with cqual frequencies.
In 1848 Pasteur made the discovery that when the sodium ammonium salt
of optically inactive racemic acid was reerysiallized from an aquceous
solution at a lower temperature the deposit consisted of two kinds of tiny
crystals which were mirror images of cach other. They were carefully
separated, and the acids set free from the one and the other proved to

1O 1 In o later Jecture Wevl explains how the visible symmetry of crystals derives
from their regular atomic arrangement. £n. |
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have the same chemical composition as the racemic acid, but one was
optically laevo-active, the other dextro-active. The latter was found to be
identical with the tartaric acid present in fermenting grapes, the other had
never before been observed in nature. “Seldom,” says F. M. Jacger in his
lectures On the principle of svmmerry and irs applications in natural sci-
ence, “has a scientific discovery had such far-reaching consequences as
this one had.”

Quite obviously some accidents hard to control decide whether at a
spot of the solution a laevo- or dextro-crvstal comes into being: and thus
in agrecment with the symmetric and optically inactive character of the
solution as a whole and with the law of chance the amounts of substance
deposited in the one und the other form at any moment of the process of
crystallization are equal or very nearly equal. On the other hand nature.
in giving us the wonderful gift of grapes so much enjoved by Noah, pro-
duced only one of the forms. and it remained for Pasteur to produce the
other! This is strange indeed. Tt is a fact that most of the numerous car-
bonic compounds occur in nature in one, either the laevo- or the dextro-
form only. The sense in which a snail's shell winds is an inheritable
character founded in its genetic constitution, as is the “left heart” and the
winding of the intestinal duct in the species Homo sapiens. This does not
exclude that inversions occur, e.g. situs inversus of the intestines of man
occurs with a frequency of about 0.02 per cent: we shall come back to
that later! Also the deeper chemical constitution of our human body shows
that we have a screw, a screw that is turning the same way in every one
of us. Thus our body contains the dextro-rotatory form of glucose and
laevo-rotatory form of fructose. A horrid manifestation of this genotypical
asymmetry is a metabolic disease called phenylketonuria, leading to in-
sanity, that man contracts when a small quantity of laevo-phenylalanine is
added to his food, while the dextro-form has no such disastrous effects.
To the asymmetric chemical constitution of living organisms one must
attribute the success of Pasteur's method of isolating the laevo- and dextro-
forms of substances by means of the enzymatic action of bacteria. moulds,
yeasts, and the like. Thus he found that an originallv inactive solution of
some racemate became gradually laevo-rotatory if Penicillium glaucum
was grown in it. Clearly the organism selected for its nutriment that form
of the tartaric acid molecuie which best suited its own asymmetric chem-
tcal constitution. The image of lock and key has been used to illustrate
this specificity of the action of organisms.

In view of the facts mentioned and in view of the failure of all at-
tempts to “activate” by mere chemical means optically inactive material.'!
it is understandablc that Pasteur clung to the opinion that the production

- o . . - . L .
There 15 known today one clear instance, the reaction of nitrocinnaminacid with
bromine where circular-polarized light generates an optically active substance.
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of single optically active compounds was the very prerogative of hfe. In
1860 he wrote, “This is perhaps the only well-marked line of demarkation
that can at present be drawn between the chemistry of dead and living
matter.” Pasteur tried to explain his very first experiment where racemic
acid was transformed by reerystallization into a mixture of laevo- and
dextro-tartaric acid by the action of bacteria in the atmosphere on his
neutral solution. {t is quite certain today that he was wrong: the sober
physical explanation lies in the fact that at lower temperature a mixture
of the two oppositely active tartaric forms is more stable than the in-
active racemic form. If therc is a difference in principle between life and
death it does not lie in the chemistry of the material substratum; this has
been fairty certain ever since Wohler in 1828 synthesized urea from purely
mineral material. But even as late as 1898 F. R. Japp in a famous fecture
on “Stereochemistry and Vitalism™ before the British Association upheld
Pasteur’s view in the modified form: “Only the living organisms, or the
living intelligence with its conception of symmetry can produce this result
{(i.e. asymmetric compounds).” Does he rcally mean that it is Pasteur’s
intetligence that, by devising the experiment but to its own great surprise,
creates the dual tartaric crystals? Japp continues, “Only asymmetry can
beget asymmetry.” The truth of that statement | am willing to admit; but
it is of little help since there is no symmetry in the accidental past and
present set-up of the actual world which begets the future.

There is however a real difficulty: Why should nature produce only one
of the doublets of so many enantiomorphic forms the origin of which
most certainly lies in living organisms? Pascual Jordan points to this fact
as a support for his opinion that the beginnings of life are not due to
chance events which, once a certain stage of evolution is reached, are apt
to occur continuously now here now there, but rather to an event of quite
singular and improbable character, occurring once by accident and then
starting an avalanche by autocatalvtic multiplication. Indeed had the asym-
metric protein molecules found in plants and animals an independent
origin in many places at many times, then their laevo- and dextro-varieties
should show nearly the same abundance. Thus it looks as if there is some
truth in the story of Adam and Eve, if not for the origin of mankind then
for that of the primordial forms of life. It was in reference to these
biotogical facts when [ said before that if taken at their face value they
suggest an intrinsic difference between left and right, at least as tar as the
constitution of the organic world is concerned. But we may be sure the
answer to our riddle does not lie in any universal biological laws but in
the accidents of the genesis of the organismic world. Pascual Jordan shows
one way out; one would like to find a less radical one. for instance by
reducing the asymmetry of the inhabitants on earth to some inherent,

though accidental, asymmetry of the carth itself, or of the light reccived
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on carth from the sun. But neither the carth’s retation nor the combined
magnetic fields of earth and sun are of immediate help in this regard.
Another possibility would ke to assume that development actually started
from an equal distribution of the enantiomorph forms, but that this is an
unstable cquilibrium which under a slight chance disturbance tumbled
over,

From the phyvlogenetic problems of left and right iet us finally turn 1o
their ontogenesis. Two questions arise: Does the first division of the ferti-
lized egg of an animal into two cells fix the median planc. so that one
of the cells contains the potencies for its left, the other for its right half?
Secondly what determines ithe plane of the first division? T begin with the
second question. The egg of any animal above the prowzoa possesses
from the beginning a poiar axis connecting what develops into the animai
and the vegetative poles of the blastula. This axis together with the point
where the fertilizing spermatozoon enters the cge determines a plane, and
it would be quite natural to assume that this is the plane of the first
division. And indeed there is evidence that it is so in many cases. Present
opinion seems to incline toward the assumption that the primary polarity
as well as the subsequent bilateral symmetry come about by external
factors actualizing potentialities inherent in the genetic constitution. In
many instances the direction of the polar axis is obviously determined by
the attachment of the oozyte to the wall of the ovary. and the point of
entrance of the fertilizing sperm is, as we said, at least one. and often
the most decisive, of the determining factors for the median plane. But
other agencies may also be responsible for the fixation of the one and the
other. In the sea-weed Fucus light or clectric fields or chemical gradients
determine the polar axis, and in some insects and cephalopods the median
plane appeuars to be fixed by ovarian influences before fertilization.'® The
underlying constitution on which these agencies work is sought by some
biologists in an intimate preformed structure. of which we do not yet
have a clear picture. Thus Conklin has spoken of a spongioplasmic frame-
wark, others of a cytoskeleton, and as there is now a strone tendency
among biochemists o reduce structural properties 1o fbers, so much o
thar Joseph Needham in his Terrv ©Tectures on Order and life (1936)
dares the aphorism that biology is largely the stwly of fibers. one may
expect them (o find that that intimare structure of the ceg consists of a

framework of elongated protein molecules or fuid crvstals.

Hlutian S Hudev and G Re de Beer in their classical & demens af enthryology
CCaabridee University Press, 1933) aive this formiilatGon (Chapter xiv. Smhm;u‘v.
PoAREY D o the earliest stages. the ege acquires o unuary oreanization ot the grzldit‘,m—
eid type in which quantiative differemtials of one or more Kinds extend acrosy the
substance of the eeg in one or more directions. The constitution of the cup predeter-
mines it to be able to produce a wadientfield of partreular Lype: however, the
localization of the gradients is not predetermined. but is brought about by agencics
external to the egp”
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We know a little more about our first question whether the first mitosis
of the cell divides it into left and right. Because of the fundamental char-
acter of bilateral symmetry the hypothesis that this is so seems plausible
enough. However, the unswer cannot be an unqualified affirmation. Even
if the hypothesis should be true for the normal development we know
from experiments first performed by Hans Driesch on the sea urchin that
4 single blastomere isolated from its partner in the two-cell stage develops
into:x whole gastrula differing from the normal one only by its smaller
size. Here are Driesch’s famous pictures. It must be admitted that this is
not so for all species. Driesch’s discovery led to the distinction between
the actuai and the potential destiny of the several parts of an egg. Driesch
himself speaks of prospective significance (prespektive Bedeutung), as
against prlospcctivc potency (prospektive Potenz); the latter is wider tha.n
the former, but shrinks in the course of development. Let me illustrate this
basic point by another example taken from the determination ot lyimb-buds
of amphibia. According to experiments performed by R. G. Harrison, who
transplanted discs of the outer wall of the body representing the buds of
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Lxperiments on pluripotence in “Echinus.”
51, and b,. Normal gastrida and normal pliteus. o
a., and b.. Half-gastruia and hall-plutens, expected by D/'_w.\'('.z.
ay and by The small bur whole gastrula and pluteus. which hie actually

obtained.

future limbs. the antero-posterior axis is determined at & time when trans-
plantation may still invert the dorso-ventral and the medio-lateral axes:
thus at this stage the opposites of left and right still belong to the prospec-
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ttve potencies of the discs, and it depends on the influence of the surround-
ing tissues in which way this potency will be actualized.

Driesch’s violent encroachment on the normal development proves that
the first cell division may not fix left and right of the growing organism
for good. But even in normal development the plane of the first division
may not be the median. The first stages of cell division have been closely
studied for the worm Ascaris megalocephala, parts of whose nervous
systeid are asymmetrie. Firsi the fertfized ege splits into a cell £ and 4
smaiter 2 ¢f obviously different mature (Figure 183, In the next stage they
fivide slong iwo perpendicuisr planes mw 77+ i7 and 2yb P, respec-
svelve Thercatior the hundle P, - 2o warns about so that £, comes into
condact wathy cather 70 or /70 catf the one i contacts £, the other 4. We
Ao hiee s sort ol shambord and roughtv 42, s the antero=postesrtor axis
and BP0 the dorsal-ventral one. Only the next division which along i
planc perpendicuiar o the one separatmg A and 8 splits 4 as well as 3
into symmetric halves A4 = a b a, B = b 1 g is that which determines left
and right. A further skight shift of the configuration destrovs this bilateral
svmmetry, The question arises whether the direction of the two consecu-
tive shilts is w chanee event which decides first between anterior and

posterior and then hetween left and right. or whether the constitution of
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the egg in its one-cell stage contains specific agents which determine the
direction of these shifts. The hypothesis of the mosaic egg favoring the
sccond hypothesis scems more likely for the species Ascaris.

There are known a number of cases of genotypical inversion where the
genetic constitutions of two specics are in the same relation as the atomic
constitutions of two enantiomorph crysials. More frequent. however. is
phenotypical inversion. Left-handedness in man is an example. 1 give an-
other more interesting one. Several crustacea of the lobster type have two
morphologically and functionally different claws, a bigger 4 and a smaller
a. Assume that in normally developed individuals of our species, A is the
right claw. Tf in a young animai you cut off the right claw. inversive re-
generation takes place: the left claw develops into the bigger form 4 while
al the place of the right claw a smail one of type « is regenerared. One has
to infer from such and similar experiences the bipotentiality of plasma.
namely that all generative tissues which contain the potency of an asym-
metric character have the potency of bringing forth both forms, so how-
ever that in normal development always one form develops, the left or
the right. Which one is genetically determined. but abnormal external
circumstances may cause inversion. On the basis of the strange phenom-
enon of inversive regeneration Withelm Ludwig developed the hypothesis
that the decisive factors in asymmetry may not be such specific potencies
as, say, the development of a “right claw of type 4. but two R and L
(right and left) agents which are distributed in the organism with a cer-
tain gradient, the concentration of one falling off from right to left, the
other in the opposite direction. The essential point is that there is not one
but that there are two opposite gradient fields R and L. Which is produced
in greater strength is determined by the genetic constitutien. Tf, however,
by some damage to the prevalent agent the other previously suppressed
onc becomes prevalent, then inversion takes place. Being a mathematician
and not a biologist T report with the utmost caution on these matters,
which seem to me of highly hypothetical nature. But it is clear that the
contrast of left and right is connected with the deepest prohlems concern-

ing the phylogenesis as well as the ontogenesis of organisms.
RANSLATORY. ROTATIONAL . AND REIATTD 5% AMMUTRIFS

From hilateral. we shall now turn 1o other kinds of geometric svmmetry,
Fven in discussing the bilateral type T could not help drawing in now and
then such other symmetries as the cvlindrical or the spherical ones. It
scems best to fix the underlying general concept with some precision be-
forchand. and to that end a little mathematics is needed. for which T ask
your patience. T have spoken of transformations. A mapping § of space
associates with every space point p a point p” as its image. A special such
mapping is the identity T carrying cvery point p into itself. Given two
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mappings S, T, one can perform one after the other: if S carries p into p’
and T carries p” into p” then the resulting mapping, which we denote hy
ST, carries p into p”. A mapping may have an inverse $* such that S = ’
and §°S = I1 in other words, if § carries the arbitrary peint p into p’ then
§” carries p” back into p, and a similar condition prevails with § per-
formed in the first and S in the second place. For such a one-to-one map-
ping S the word transformation was used in the first lecture: let the inverse
be denoted by §—'. Of course. the identity 7 is a transformation, and 7
itself is its inverse. Reflection in a plane, the basic operation of bilateral
symmetry, is such that its iteration §§ resuits in the identity: in other
words. it is its own inverse. {n gencral composition of mappings is not
commutative; ST need not be the same as TS. Take for instance 1 point o
in a plane and let 5 be a horizontal translation carrving o into o, and 7
a rotation around o by 90°. Then ST carries o into the point 0. (Figure
19), but TS carries o into oy. If § is a transformation with the inverse
=1, then §—1 is also a transformation and its inverse is . The composite
of two transformations ST is a transformation again, and (ST)~! equals
T-1§=1 {in this order!). With this rule, although perhaps not with its
mathematical expression, you are all familiar. When you dress, it is not
immaterial in which order you perform the operations; and when in
dressing you start with the shirt and end up with the coat. then in un-

dressing you observe the opposite order: first take off the coat and the
shirt comes last.

I .

FIGURE 19

I have further spoken of a special kind of transformations of space
called similarity by the gecometers. But 1 preferred the name of :;tho—
morphisms for them, defining them with Letbniz as those transformations
which leave the structure of space unchanged. For the moment it is imma-
terial wherein that structurc consists. From the very definition it is clear
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that the identity / is an automorphism, and if § is, so is the inverse S—1,
Moreover the composite ST of two automorphisms &, 7 is again an auto-
morphism. This is only another way of saying that (1) every figure is
similar to itself, (2) if figure F’ is similar to F then F is similar to F’, and
(3) if Fissimilar to F” and F’ to F” then F is similar to 7. The mathe-
maticians have adopted the word group to describe this situation and
therefore say thut the euromorphisms form « group. Any totality, any set
T of transformations form a group provided the following conditions are
satisfied: (1) the identity / belongs to ' {2) if S belongs to T then its
inverse $—! does: (3) if § and 7 belong to 1" then the composite ST
does.

One way of describing the structure of space, preferred by both Newton
and Helmbeltz, is through the notion of congruence. Congruent parts of
space V', V7 are such as can be occupied by the same rigid body in two of
its positions. If you move the body from the one into the other position
the particle of the body covering a point p of ¥V will afterwards cover a
certain point p” of V’, and thus the result of the motion is a1 mapping
p—>p- ol ¥ upon V. We can extend the rigid body either actuaily or in
imagination so as to cover an arbitrarily given point p of space, and hence
the congruent mapping p — p’ can be extended to the entire space. Any
such congruent transformation—1 call it by that name because it evidently
has an inverse p’ — p—is a similarity or an automorphism; you cun easily
convince yourselves that this follows tfrom the very concepts. It is evident
moreover that the congruent transformations form a group, a subgroup
of the group of automorphisms. In more detail the situation is this. Among
the similarities there are those which do not change the dimensions of a
body: we shall now call them congruences. A congruence is either proper,
carrying a left screw into a left and a right one into a right, or it is im-
proper or reflexive, changing a left screw into a right one and vice versa.
The proper congruences are those transformations which a moment ago
we called congruent transformations. connecting the positions of points
of a rigid body before and after a motion. We shall now call them simply
motions (in a nonkinematic geometric sense) and call the improper
congruences reflections, after the most important example: reflection in a
plane. by which a body goes over into its mirror image. Thus we have
this step-wise arrangement: similarities — congruences = similaritics with-
out change of scale — motions = proper congruences. The congruences
form a subgroup of the similarities, the motions form a subgroup of the
group of congruences, of index 2. The lattcr addition means that if B is
any given improper congruence, we obtain all improper congruences in
the form BS by composing B with all possible proper congruences S.
Hence the proper congruences form one half, and the improper ones
another half, of the group of all congruences. But only the first half is a
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group: for the compositc AB of two improper coneruences A4, B is a
proper congruence,

A congruence leaving the point O fixed may be called rorarion around
O thus there are proper and improper rotations. The rotations around a

FIGURE 20

given center O form a group. The simplest type of congruences are the

translarions. A translation may be represented by a vector AA?: for if a
translation carries a point 4 into A4’ and the point B into B then BB has
the same direction and length as AA’, in other words the vector BB =
AAZ The translations form a group: indeed the succession of the two

——— —>

translations 48, BC results in the transiation AC.

What has all this to do with symmetry? It provides the adequate mathe-
matical Janguage to define it. Given a spatial configuration §, those auto-
morphisms of space which leave # unchanged form a group I, and rhis
group describes exactly the svmmetry possessed bv JF. Space itself has
the full symmetry corresponding to the group of all automorphisms, of all
similaritics. The symmetry of any figure in space is described by a subgroup
of that group. Take for instance the famous pentagram (Figure 21) by
which Dr. Faust banned Mephistopheles the devil. It is carried into itself
by the five proper rotations around its center (). the angles of which are
multiples of 3607 5 (including the identity ), and then by the five reflections
m the lines joining O with the five vertices. These ten operations form
group, and that group tells us what sert of symmetry ihe pentagram pos-
sesses Henee the natural generalization which feads from bilarcral svmme
try to svmmetry in this wider geometric sense consists m repiacing reflection

i a plane by any group of attemorphisins, The circle ina plane with cente:

" While u segment has only leneth, o vector has fensth and direction. A vector
i really the same thing as o transtation. althotigh one uses different phirascologies
for vectors and translations. Instead of speaking of the transladon 4 which carries

—_—
the point 4 into " one speaks of the vector d =447 and instead of the phrase:
the translation @ carries A4 into 1" one says thut 7 s the end pomt of the vector d
laid off from . The same vector faid off from 5 ends i B if the transtation carrying
A nto A7 carries B into B,
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FIGURE 21

O and the sphere in space around O have the symmetry described by the
group of all plane or spatial rotations respectively. . N

If a figure §F does not extend to infinity then an automorphism leaving
the figure invariant must be scale-preserving and hence a COﬂgrl.JCHCC,
unicssythc figure consists of one point only. Here is the simple proof. Had
we an automorphism leaving 3 unchanged, but changing the scale, then
either this automorphism or its inverse would increase (and nf)t decrease)
all linear dimensions in a certain proportion a : 1 where a is a n‘umber
greater than 1. Call that automorphism S, and let a, 8 be two different
points of our figure . They have a positive distance d. Iterate the trans-

formation .S,
S=2S5 S§ =52 SS§=8% ...

The n-times iterated transformation S$* carries « and g into two points
a,. B, of our figure whose distance is d-a". With :mcreasing exponen.t n
this distance tends to infinity. But if our figure F is bounded, there is a
number ¢ such that no two points of JF have a distance greater than c.
Hence a contradiction arises as soon as n becomes so large that d-ar ,\ c.
The argument shows another thing: Any finite group of automorphisms
consists exclusively of congruences. For if it contains an S that 'cnlargcs
linear dimensions at the ratio « . 1.« - 1. then all the infinitely many
iterations S', 8%, 57, contuinied in the group would be different be-
cause they eniarge at different scules !, o7, @ - - fFor such reasons
as these we shall almost exclusively consider groups of congrucncc?.au—
even if we have to do with actually or potentially infinite configurations
such as band ornaments and the like.

After these general mathematical considerations let us now take up
some special groups of symmetry which are important m ar.t or. nature.
The operation which defines bilateral symmetry, mirror reflection, is essen-
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tially a one-dimensional operation. A straight line can be reflected in any
of its points O this reflection curries a point P into that point P’ that has
the same distance from O but lies on the other side. Such reflections are
the only improper congruences of the one-dimensional line, whereas its
only proper congruences are the translations. Reflection in O followed by
the translation 4 vields reflection in that point 4, which halves the dis-
tance OA4. A figure which is invariant vnder a translation 7 shows what
in the art of ornament is called “infinite rapport,” i.e. repetition in a regu-
lar spatial rhythm. A pattern invariant under the translation ¢ is also

invariant under its iterations 1, 2, /3,

il

-, moreover under the identity
=1 and under the inverse r= ! of ¢ and {15 iterations =1, =2, +3,

LN

-

If ¢ shifts the line by the amount « then  shifts it hy the amount

na (n=210, =1, £2. - - .3,

Hence if we characterize a translation ¢ by the shift « it effects then the
iteration or power # is characterized by the multiple na. All translations
carrying into itself a given pattern of infinite rapport on a straight line
are mn this sense multiples na of one busic translation «. This rhythmic
may be combined with reflexive symmetry. If so the centers of reflections
follow each other at half the distance *2a. Only these two types of sym-
metry, as illustrated by Figure 22, are possibic for a one-dimensional
pattern or “ornament.” (The crosses < mark the centers of reflection.)
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FIGURE 22

Of course the real band ornaments arc not strictly one-dimensional.
but their symmetry as far as we have described it now makes use of {heir
tongitudinal dimension only. Here are sume simple examples from Greek
art. The first (Figure 23} which shows a4 very frequent motif, the
palmette. is of type 1 transhution 1 reflection). The next {Figure 24)
aie withour refections ihvpe 1), This tieve of Persan bowmen from
Darius’ palace n Susa i Figure 255 is pure transiation: but vou should
notice that the basic transiation covers twice the distance from man to
mun because the costumes of the bowmen alternute. Onee more 1 shail
point out the Monreale mosaic of the Lord’s Ascension (Figure 10, but
this time drawing vour attention to the band ornaments framing it. The
widest, carried out in a peculiar technique. later taken up by the Cosmati,
displays the transiatory symmetry only by repetition of the outer contour

of the basic tree-like motif. while cach copy is filled by a different highly
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FIGURE 23

FIGURE 24
svmmetric two-dimensional mosaic. The palace of the doges n Ventee
{Figure 26) may stand for transtatory symmetry in architecture. Innu-
merable examples could be added.

As I said before. band ornaments really consist of a two-dimensional
strip around a central line and thus have a second transversal dimension.
As such they can have further symmetries. The pattern may be carried
into itself by reflection in the central line 5 let us distinguish this as longi-
tudinal reflection from the transversal reflection in a line perpendicular
to 1. Or the pattern may be carried into itself by longitudinal reflection
combined with the translation by '¢a (longitudinal stip reflection). A fre-

Symmetry

701

FIGURE 25
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quent motif in band ornaments are cords, strings,
or plaits of some sort, the design of which suggests
that one strand crosses the other in space (and thus
makes part of it invisible). If this interpretation is
accepted, further operations become possible; for
example, reflection in the plane of the ornziment
would change a strand slightly above the plane into
one below. All this can be thoroughly analyzed in
terms of group theory as is for instance done in
a4 section of Andreas Speiser's book, Theorie der
Gruppen von endlicher Ordnung.

In the organic world the translatory symmenry,
which the zoologists call metamerism, Is seldom
as regular as bilateral symmetry frequently is. A
maple shoot and a shoot of Angraccum distichum
(Figure 27) may serve as examples.'* In the latter
case translation is accompanied by longitudinal
slip reflection. Of course the pattern does not go
on into infinity (nor does a band ornament), but
one may say that it is potentially infinite at least

in one direction, as in the course of time ever new p |

segments separated from each other by a bud
come into being. Goethe said of the tails of verte-
brates that they allude as it were to the potential
infinity of organic existence. The central part of
the animal shown in this picture, a scolopendrid
(Figure 28), possesses fairly regular translational,
combined with bilateral, symmetry, the basic oper-
ations of which are translation by one segment
and longitudinal reflection.

In one-dimensional time repetition at equal in-
tervals is the musical principle of rhvthm. As a
shoot grows it translates. one might say. a slow
temporal into a spatial rhythm. Reflection, inver-
sion in time, plays a far less important part in
music than rhythm does. A melody changes its
character to a considerable degree if plaved back-
ward, and [, who am a poor musician, find it hard
to recognize reflection when it is used in the con-
struction of a fugue: it certainly has no such spon-

14 This and the next picture are taken from Studium
Generale, p. 249 and p. 24t (article by W. Troll. “Sym-
metriebetrachtung in der Biologie).
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taneous effect as rhythm. All musicians agree that underlying the emotional
element of music is a strong formal element. It may be that it is capable .of
some such mathematical treatment as has proved successful for the art of
ornaments. If so, we have probably not yet discovered the appropriate
mathematical tools. This would not be so surprising. For after all, the
Egyptians excelled in the ornamental art four thousand years before the
mathematicians discovered in the group concept the proper mathematical
instrument for the treatment of ornaments and for the derivation of their
possible symmetry classes. Andreas Speiser, who has taken a special
interest in the group-theoretic aspect of ornaments, tried to apply com-
binatorial principles of a mathematical nature also to the formal pm};lems
of music. There is a chapter with this title in his book, “*Die mathematische
Denkweise,” (Zurich, 1932). As an example, he analvzes Becthoven’s
pastoral sonata for piano, opus 28, and he also points to Alfred Lorenz’s
investigations on the formal structure of Richard Wagner’s chief works.
Metrics in poetry is closely related, and here, so Speiser maintains, science
has penetrated much deeper. A common principle in music and prosody
seems to be the configuration ¢ a b which is often called a bar: a theme
a that is repeated and then followed by the “envov™ b: strophe, antis-
trophe, and epode in Greek choric lyrics. But such schemes fall hardly
under the heading of symmetry.’5 -

We return to symmetry in space. Take a band ornament where the in-
dividual section repeated again and again is of length @ and sling it around
a circular cylinder, the circumference of which is an integral multiple of
a. for instance 25a4. You then obtain a pattern which is carried over into
itself through the rotation around the cylinder axis by « = 360°/25 and
its repetitions. The twenty-fifth iteration is the rotation by 360°, or the
identity. We thus get a finite group of rotations of order 25, i.e. one con-
sisting of 25 operations. The cylinder may be replaced by any surface of
cylindrical symmetry, namely by one that is carried into itself by all
rotations around a certain axis, for instance by a vase. Figure 29 shows
an attic vase of the geometric period which displays quite a number of
simple ornaments of this type. The principle of symmetry is the same,
although the style is no tonger “geometric.” in this Rhodian pitcher
tFigure 30), Tonian school of the seventh century g Other illustrations
are such capitals as these from early Egypt tFigure 31y, Any finite group
of proper rotations around a point O in a plane, or around a given axis
in space, contains a primitive rotation ¢ whose angle 1s an aliquot part
360" 7n of the full rotation by 360", and consists of its iterations o

1 = identity. The order n completely characterizes this group.
The result follows from the analogous fact that any group of translations

15 The reader should compare what G. D. Birkhoff has to say on the mathematics
of poetry and music in the two publications quoted in note 1.
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of a line, provided it contains no operations arbitrarily near to the identity
except the identity itself, consists of the iterations va of a single translation
a(v=20, =1, +2, - - ).

The wooden dome in the Bardo of Tunis, once the palace of the Beys
of Tunts (Figure 32), may serve as an example from interior architecture.

FIG{JRE 29 FIGURE 30
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FIGURE 32
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The next picture (Figure 33) takes vou to Pisa: the Baptisterium with the
tinv-looking statue of John the Baptist on top is a central butiding in
whose extertor you can distinguish six horizontad lavers cach of rotary
symmetry of a different order #. One could make the picture sull more
impressive by adding the leuning tower with its six galleries of arcades
ali having rotary symmetry of the same high order and the dome itselt.
the exterior of whose nave displays in columns and friezes patterns of the
lineal translatory type ot symmetry while the cupola is surrounded by a
colonnade of high order rotary symmetry.

An cntirely different spirit speaks to us from the view, seen from the
FIGURE 31

rear of the choir. of the Romuanesque cathedral in Mainz, Germany
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FIGURE 33

(Figure 34). Yet again repetition in the round arcs of the friezes, OL‘lg
onal central symmetry (7= 8, a low value compared to those embodied
in the several tavers of the Pisa Baptisterim) in the small rosette ;»md the
three towers. while bilateral symmetry rules the structure s whole as
well as almost every detail. - - -
Cvelic symmetry appears in its simplest form if the ~s‘urfucc of fuily
cy\ir;dricnl.symmctry is a plane pcrpemiicular. to the axis. We thc.n' :cfm
limit ourselves to the two-dimensional plane with a center 0. Magmhu‘nt
exampies of such central plane symmetry are provided by the rosc wm«h
dows of Gothic cathedrals with their hrilliant-colored glz}ss»\f(>rk, T.hc
richest 1 remember is the rosette of St. Pierre in Troyes, France, which

is based on the number 3 throughout.
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FIGURE 34

Flowers, nature’s gentlest children, are also conspicuous for their colors
and their cyclic symmetry. Here (Figure 35) is a picture of an iris with
its triple pole. The symmetry of £ is most frequent among flowers. A page
like the following (Figure 36) from Ernst Haeckel's Kunstformen der
Varir seems 1o indicate that it also occurs not inirequently among the
fower antmals. Bur the biologists warn me that the outward appearance
of these echinoderms of the class of Ophiodea 1s to a certain degree de-
ceptive; their larvae are organized according to the principle of bilateral
symmetry. No such objection attaches to the next picture from the same
source (Figure 37), a Discomedusa of octagonal symmetry. For the coe-
lentera occupy a place in the phylogenetic evolution where cyclic has not
yet given way to bilateral symmetry. Haeckels extraordinary work. in
which his interest in the concrete forms of organisms finds expression in
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FIGURE 35

countless drawings executed in minutest detail. is a true nature’s codex
of symmetry. Equally revealing for Haeckel, the biologist, are the thou-
sands and thousands of figures in his Challenger Monograph, in which he
describes for the first time 3.508 new species of radiolarians discovered
by hint on the Chailenger Pxpedition. 1887, One should not forget these
accomplishments over the otten all-too-speculative phviogenetic construc-
tions in which this enthustastic aposile of Darwinism induiged, and over
his rather shallow materialistic philosophy of monism, which made quite
a splash in Germany around the turn of the century.

Speaking of Medusae 1 cannot resist the tempration of quoting a few
lincs from D"Arcy Thompson's classic work on Growth and Form, 1 mas-
terpicee of English iterature, which combines profound knowicdge in
geometry, physics. and biology with humanistic erudition and scientific in-

sight of unusual originality. Thompson reports on physical cxperiments
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with hanging drops which serve to illustrate by analogy the formation of
medusae. “The living medusa,” he says, “has geometrical symmetry so
marked and regular as to suggest a physical or mechanical element in the
little creatures’ growth and construction. It has, to begin with, its vortex-
like bell or umbrella, with its symmetrical handle or manubrium. The bell
is traversed by radial canals, four or in multiples of four; its cdge is
beset with tentacles, smooth or often beaded, at regular intervals or of
graded sizes; and certain sensory structures, including solid concretions
or ‘otoliths,” are also symmetrically interspersed. No sooner made, then it
begins to pulsate; the bell begins to ‘ring.” Buds, miniature replicas of the
parent-organism, are very apt to appear on the tentacles, or on the manu-
brium or sometimes on the edge of the bell; we scem to see one vortex
producing others before our eves. The development of a medusoid de-
serves to be studied without prejudice from this point of view. Certain it
is that the tiny medusoids of Obelia, for instance, are budded off with a
rapidity and a complete perfection which suggests an automatic and all
but instantaneous act of conformation, rather than a gradual process of
growth.”

While pentagonal symmetry is frequent in the organic world, one does
not find it among the most perfectly symmetrical creations of inorganic
nature, among the crystals. There no other rotational symmetries are pos-
sible than those of order 2, 3, 4. and 6. Snow crystals provide the best
known specimens of hexagonal symmetry. Figure 38 shows some of these
little marvels of frozen water. In my youth, when they came down from
heaven around Christmastime blanketing the landscape, they were the
delight of old and young. Now only the skiers like them, while they have
become the abomination of motorists. Those versed in English literature
will remember Sir Thomas Browne’s quaint account in his Garden of
Cyrus (1658) of hexagonal and “quincuncial” symmetry which “doth
neatly declare how nature Geometrizeth and observeth order in all things.”
One versed in German literature will remember how Thomas Mann in his
Magic Mountain 1% describes the “hexagonale Unwesen” of the snow storm
in which his hero. Hans Castorp. nearly perishes when he falls asleep with
exhaustion und leaning against a harn dreams his deep dream of death
and love. An hour before when Hans sets out on his unwarranted expedi-
tion on skis he enjovs the play of the flakes “and among these myriads of

)

enchanting little stars.,” so he philosophizes. “in their hidden splendor,
too small for man's naked eve to see, there was not one like unto another;
an endless inventiveness governed the development and unthinkable dif-
ferentiation of one and the same basic scheme, the equilateral, equiangled
hexagon. Yet cach in itself—this was the uncanny, the antiorganic, the

16 [ quote Helen Lowe-Porter’s translution, Kaopf, New York. 1927 and 1939
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life-denving character of them all-——each of them was absaolutely sym-
metrical, icily regular in form. They were too regular,. as substance
adapted to life never was to this degree—the living principle shuddered
at this perfect precision, found it deathly, the very marrow of death—Hans
Castorp felt he understood now the reason why the puilders of antiquity
purposely and secretly introduced minute variation from absolute sym-
metry in their columnar structures.” 17

Up to now we have paid attention to proper rotations only. If improper
rotations are taken into consideration, we have the two following possi-
bilities for finite groups of rotations around a center ¢ i plane geometry,
which correspond to the two possibilitics we encountered for ornamental
symmetry on a line: (1) the group consisiing of the repetitions of a single
proper rotation by an aliquot part a = 3607 1 of 3607 (2) the group of
these rotations combined with the reflections in nr axes forming angles of
6. The first group is called the cyclic group €, and the second the di-
hedral group D,. Thus these are the only possible central symmetries in
{wo-dimensions:

(1) C,.CaCy - - Dy Dy Dy

¢, means no symmetry at all, D, bilateral symmetry and nothing else.
In architecture the symmetry of 4 prevails. Towers often have hexagonal
symmetry. Central puildings with the symmetry of 6 are much less fre-
quent. The first pure central building after antiquity, S. Maria degii Angeli
in Florence (begun 1434), is an octagon. Pentagons are very rare. When
once before [ lectured on symmetry in Vienna in 1937 I said 1 knew of
only one example and that a very inconspicuous one, forming the passage-
way from San Michele di Murano in Venice to the hexagonal Capella
Emiliana. Now, of course, we have the Pentagon building in Washington.
By its size and distinctive shape, it provides an attractive landmark for
hombers. Leonardo da Vinci engaged in systematically determining the
possible symmetries ol a centrai building and how to attach chapels
and niches without destroying the symmetry of the nucleus. In abstract
modern terminoiogy. his result is essentially our above tuble ot the
possible finte groups ol otalions {proper and impropes?) in two dimen-
sions.

So far the rotational symmetry i a pianc had ulways been accompanied
by reflective symmetry: [ have shown you quite a number of examples
for the dihedral group D, and none for the simpler cyclic group C,. But
this is more or less accidental. Here (Figure 39) are two flowers, a gerd-

17 Diirer considered his canon of the human figure maore as o standard from which
to deviate than as a standard toward which to strive. Vitruvius' remperatirae seem
to have the same sense, and maybe the little word “almost” in the statement ascribed
to Polykleitos and mentioned in note | points in the same direction.

FIGURE 38
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nium (1) with the symmetry group Dj while Vinca herbacea (1) has the
more restricted group C; owing to the asymmetry of its petals. Figure 40
shows what is perhaps the simplest figure with rotational symmetry, the
ipod (n = 3). When one wants 1o climinate the attending reflective
symmetry, onc puts little flags unto the arms and obtains the triguetrum,

FIGURE 39

FIGURE 40

an old magic symbol. The Greeks, for instance, used it with the Medusa’s
head in the center as the symbol for the three-cornered Sicily. (Mathe-
maticians are famiiiar with it as the seal on the cover of the Rendiconti
del Circolo Matematico di Palermo.) The modification with four instead
of three arms is the swastika, which need not be shown here—-one of the
most primeval symbols of mankind, common possession of a number of
apparently independent civilizations. In my lecture on symmetry in Vienna
in the fait of 1937, 4 short time before Hitler's hordes occupied Austria,
! added concerning the swastika: “In our days it has become the symbol
of a terror far more terrible than the snake-girdled Medusa’s head™--—-and
a pandemonium of applause and booing broke loosc in the audience. Tt
scems that the origin of the magic power ascribed to these patterns lies
in their startling incomplete symmetry—rotations without reflections. Here
(Figure 41) is the graccfully designed staircase of the pulpit of the
Stephan’s dome in Vienna; a triquetrum alternates with a swastika-like
wheel.

So much about rotational symmetry in two dimensions. If dealing with

Svrmumnefry
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FIGURE 41
potentially infinite patterns like band ornaments or with infinite groups

the operation under which the pattern is invariant is not of necessity a
Fungrumcc but could be & similaritv. A similarity in one dimension 14!1;\1
a not a mere transfation has 2 fixed point O und iy u ditatation s from ¢
mocertain ratio d b where ¢ - 1 It is o essential restiicion o assumne

« U Indefinite seration of this operatiot
¢ Hederatton ol tils operation QUICTUICS O gioup X Cailstsiing

e idatations
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A good example of thrs type ot symmetry s shown by the shell ot urri-
/('l“/(i duplicata (Figare 423, 1t s really quite remarkable how exactly the
widths of the consecutive whorls of this shell follow the law of weometric
progression, ‘

The hands of some clocks perforni @ continuous uniform rotation. others

jump from minute to minute. The rotations by an integrai number of
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minutes form a discontinuous subgroup within
the continuous group of all rotations, and it is
natural to consider a rotation s and its iterations
(2) as contained in the continuous group. We
can apply this viewpoint to any similarity in 1.
2, or 3 dimensions, as a matter of fact to any
transformation s. The continuous motion of a
space-filling substance, a “fluid,” can mathe-
maticaily be described by giving the transfor-
mation U{:,¢) which carries the position P, of
any point of the fluid at the moment 7 over into
its position P, at the time ¢. These transforma-
tions form a one-parameter group if U{Lt)
depends on the time difference ' —1t only,
Ut,r) = S§(¢ — 1), ie if during equal time
intervals always the same motion is repeated.
Then the fluid is in “uniform motion.” The
FIGURE 42 simple group law

S(1,)8(15) = S(1, + ta)

expresses that the motions during two consecutive time intervals £y, fs
result in the motion during the time ¢, + f,. The motion during 1 minute
leads to a definite transformation s = §(1), and for all integers n the mo-
tion S(n) performed during n minutes is the iteration s": the discontinu-
ous group I consisting of the iterations of s is embedded in the con-
tinuous group with the parameter ¢ consisting of the motions S(t). One
could say that the continuous motion consists of the endless repetition of
the same infinitesimal motion in consecutive infinitely small time intervals
of equal length.

We could have applied this consideration to the rotations of a plane
disc as well as to dilatations. We now envisage any proper similarity s, i.e.
one which does not interchange left and right. If, as we assume, 1t is not
2 mere transiation, it has a fixed point O and consists of a rotation about
O combined with a dilatation from the center O. It can be obtained as the
stage S(1) rcached after 1 minute by a continuous process S(¢) of com-
bined uniform rotation and expansion. This process carries a point 7 O
along a so-called logarithmic or equiangular spiral. This curve, therefore,
shares with straight line and circle the important property of going over
into itself by a continuous group of similarities. The words by which
Tames Bernoulli had the spira mirabilis adorned on his tombstone in the

Symmetry
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N‘I.unster at Basle, “Eadem mutata resurgo,” are a grandiloquent expression
this Droperty Srai . : o o
of this property. Straight line and circle are limiting cases of the logarith-
. . =
I']]l o 1 B i Y Dy 1 B 1 1 1 N
¢ spiral, which arise when in the combination rotation-plus-dilatation

one of the two components happens to be the identity. The stages reached
by the process at the times

(3) r=p= - - - =2 —[,0, 1,2, -

] s A

form the group consisting of the iterations (2). The well-known shell of
Nautilus (Figure 43) shows this sort of symmelry to an astonishing per-

FIGURE 43
tectloq. You sce here not only the continuous logarithmic spiral, but the
potentially infinite sequence of chambers has 2 symmetry described by
the discontinuous group Y. For evervbody looking ur this ;VIL‘IUF(‘ (Figure
ot agant sunfower, Helianthus mavenuy, the forere will !1111\.[;22§ y
arrange themselves ints ooorithmie spirals, two sets o sprrvals of opposie
sense of cotfing, A

L w4 N
EHU OGS e

niouon i irec-Jdimensional space o g s

mouen s combinaton of a rotation sround an was with g tansiation
..1long that axis. Under the imfluence of the corresponding contmuous unt-
lor‘m moton any pomt not on the axis deseribes a screw-line or helis
w}.nch. of course, could say of itself with the same right as the togarithmic
spiral: cadem resurgo. The stages P, which the moving point rL‘ucht:s at
the equidistant moments (35 are cquidistributed over the helix like stairs
a

on ;x‘wmdmg starcase. If the angle of rotation of the opcration s is
fraction w v of the full angle 360" cxpressible in terms of small integers
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FIGURE 44

sth point of the sequence P, lies on the same vertical, and

w. v then every : !
om P, to the pomnt

w full turnings of the screw are necessary 10 get fr on
P, .. above 1. The leaves around the shoot of a P]unl ott?n shgw such a
reeular spiral arrangement. Goethe spoke of 4 spiral tendency i natuie.
;mli under the name of phyiloraxis this phenomenon, since the days of
Charles Bonnet (1754), has been the subject of much invcsligul‘mn and
among botanisis.' One has found that the fractions p/v

more speculation | - |
arrangement of leaves quite often are members

representing the screw-like
of the “Fibonacci sequence”

18 This phenomenon plays also a role in J. Hambidge's constructons, }‘{{15 (l)mxunlz]llc
sysmmerry contains on pp. 146 157 detailed notes by the mathematician R, C. Arc

bald on the logarithmic spiral, golden section. and the Fibonacci series,
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(4) W, 1,

which results from the expansion into a continued fraction of the irra-
tional number '%(\/5 - 1}. This number is no other but the ratio known
as the aurea sectio, which has plaved such a role in attempts to reduce
beauty of proportion to a mathematical formula. The cylinder on which
the screw is wound could be replaced by a cone: this amounts to replacing
the screw motion s by any proper similarity—-rotation combined with dila-
tation. The arrangement of scales on a fir-cone falls under this slightly
more general form of symmetry in phyliotaxis. The transition from cylin-
der over cone to dise is obvious. ilfustrated by the evlindrical stem of a
planr with its leaves, a fir-cone with its scules. and the discoidal inflores-
cence of Helianthus with its florets. Where one can check the numbers
{<) best, namely for the urrangement ot scales on a fir-cone, the accuracy
is not too good nor are considerable deviations too rare. P. G. Tait, in the
Proceedings of the Royal Society of Edinburgh (1872), has tried to give
a simple explanation, while A. H. Church in his voluminous treatise Re-
larions of phyllotaxis to mechanical lews (Oxford, 1901-1903) sces in the
arithmetics of phyllotaxis an organic mystery. 1 am afraid modern bota-
nists take this whole doctrine of phylotaxis less seriously than their fore-
fathers.

Apart from reflection all symmetries so far considered are described by
a group consisting of the iterations of one operation s. In one case, and
that is undoubtedly the most important, the resulting group is finite,
namely if one takes for s a rotation by an angle « = 360°/# which is an
aliquot part of the full rotation 360°. For the two-dimensional plane there
are no other finite groups of proper rotations than these; witness the first
line, €\, C., Cy, -
have the corresponding symmetry are the regular polygons: the regular

- of Leonardo’s table (1). The simplest figures which

triangle, the square, the regular pentagon, etc. The fact that there is for
every number 7 =3, 4, 5, -+ - a regular polygon of n sides is closely
related to the existence for every n of a rotational group of order n in
plane geometry. Both facts are far from trivial. Indeed. the situation in
three dimensions is altogether different: there do aot exist infinitely muny
regular polyhedra i 3-space, but not more than five, often called the
Platonic solids because they play an eminent role in Plato’s natural phi-
losophy. They are the regular tetrahedron, the cube, the octahedron, more-
over the pentagondodecahedron, the sides of which are twelve regular
pentagons, and the icosahedron bounded by twenty regular triangles. One
might say that the existence of the first three is a fairly trivial geometric
fact. But the discovery of the last two is certainly one of the most beau-
tiful and singular discoveries made in the whole history of mathematics.
With a fair amount of certainty, it can be traced to the colonial Greeks
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in southern Italy. The suggestion has been made that they abstracted the
regular dodecahedron from the crystals of pyrite, a sulphurous mineral
abundant in Sicily. But as mentioned before, the symmetry of S so char-
acteristic for the regular dodecahedron contradicts the laws of crystallog-
raphy, and indecd one finds that the pentagons bounding the dodecahedra
in which pyrite crystallizes have 4 edges of equal. but onc of different,
length. The first exact construction of the regular pentagondodecahedron
is probably due to Theactetus. There is some evidence that dodecuahedra
were used as dice in italy at a very carly time and had some religious sig-
nificance in Etruscan culture. Plato. in the dialogue Timaerns, assoctates

the regular pyramid. octahedron. cube. icosahedron, with the four ¢l

o-
ments of fire, air, earth. and water tin this order i, while in the pentagon-
dodecahedron he secs i sone sense the image of the universe as W hole.
A. Speiser has advocated the view that the construction of the five regular
solids is the chief goal of the deductive system of geometry as erected by
the Greeks and canonized in Euclid's Flements. May T mention, however.
that the Greeks never used the word “symmetric” in our modern sense.
In common usage ovpperpos MCUNS proportionate. while 1n Euchid it is
equivalent to our commensurable: side and diagonal of u square are in-
commensurable quantities. aovuperpa pevehn,

Here (Figure 45) is 1 page from Huaeckels Challenger Monograph
showing the skeletons of several Radiolarians, Numbers 2.3, and ‘5 are
octahedron, icosahedron, and dodecahedron in astonishingly regular form:
4 scems to have a lower symmetry.

Kepier. in his Mysterium cosmographicum. published In 1595, long
before he discovered the three laws bearing his name today, made an
attempt 1o reduce the distances in the planetary system to regular bodies
which are alternatingly inscribed and circumseribed to spheres. Here
{ Figure 46) is his construction. by which he believed he had penetrated
deeply into the seerets of the Creator. The six spheres correspond to the
A planets, Saturn, Juniter. Mars, Earth. Venus, Mercurius, separated in
this crder by cube, tetrahedron, dodecahedron, octabedron, icosihedron.
COf course. Kepier did not hnow Ahout the three outer prancts. Lirinus,

Noepiune,

cd Platy which were discovered i 1 boolRde, and 1930 e
spectivelvy He tres to fnd the reasons why the ©eater hud chosen th
order of the Phuonic solids and draws saratlels berween the properties of
the plancts Castrological rather than astrophvsical properties) and those
of the corresponding regular hodics. A mighty hymn in which he pro-
ciaims his credo, “Credo spatioso numen in orbe.” concludes his book.
We still share his bedief in a mathematical harmony of the universe. It
has withstood the test of cver widening cxperience. But we no longer
seek this harmony in static forms like the regular solids. but in dynamic

laws.
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plane rotations we at once obtain twa types of proper rotation groups in
space. Indeed. the

group ', of proper rotations in a horizontal plane
around a center O

O can be interpreted as consisting ol rotations in space
around the vertical axis g i i ne
the vertical axis through O. Reflection of the horizontal plane in

a line / of the plane ¢ y i
f the plane can be brought about in space through a rotation
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FIGURE 46
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reason. Inscribe a sphere into a cube and an octahedron into the sphere
such that the coraers of the vetahedron lic where the sides of the cube
touch the sphere, namely in the centers of the six square sides. (Figure 47
shows the two-dimensional analogue.) In this position cube and octa-
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FIGURE 47

hedron arc polar figures in the sense of projective geometry. It is clear
that every rotation which carries the cube into itself also leaves the octa-
hedron invariant, and vice versa. Hence the group for the octahedron is
the same as for the cube. In the same munner pentagondodecahedron and
icosahedron are polar tigures. The figure polar to a regular tetrahedron is
a regular tetrahedron the corners of which are the antipodes of those of
the first. Thus we find three new groups of proper rotations, 7, W, and
£, they are those leaving invariant the regular tetrahedron, the cube (or
octahedron), and the pentagondodecahedron {or icosahedron) respec-
tively. Their orders, ic. the number of operations in each of them, arc
12, 24, 60 respectively.

It can be shown by a relatively simiple analysis that with the addition
of thesc three groups our table is complete:

C, {(n=1,2.3 -},
(5) l);” (n = .Z )
T W, P

Phis s the modern cquivalent 1o the tabulation of the cegular polvhedra
oV e tarechss Fhese groups, n particudar the fast thiee, are an anmensely
attractive subject for geometric investigation.

What farther possibilities arise if improper rotations are also admitted
to our groups? This question is best answered by making use of one quite
singular improper rotation, namely reflection in 01 it curries any point P
into its antipode P with respeet to @ found by jeming £ with 9 and
prolonging the struight line PO by its own length: PO = QP”. This opera-
tion 7 commutes with every rotation S, ZS = 8Z. Now let I' be one of

our finite groups of proper rotations. One way of including improper
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rotations is simply by ac ljoining Z, more precis ely by adding to the p
rotations S of ' all the lmpmpu rotations of the form 7§ (mih S
The order of the group "= ' + 71" thus obtained is clearly (wice t!
- Another way of mdudmu improper rotations arises from this situ:
Suprosc I is contained as u subgroup of index 2 in another aroup
proper rotations: so that one-half of the clements of P licin 1, call
S, and nn&hu]f 87, do not. Now replace these latter by the improper
tions ZS8’. in Ihxx manner you get w group Vi which contains 1 whi
other hllf of its opcmuons are improper. For instance, 7' =- ¢, is 0

group of index 2 of = 07,1 the operations 57 of ), not contain

o e the Umkdappungen zn‘m:nd the s horizontal axes. The corres

me 75 are the reflections in the ertical planes perpendicular 1o

axes. Fhus 0 consists of the rotations around the verrical axi
angles of which are muitiples of 360" », and of the reflections in ve
planes through this uxis forming angles of 360° 25 with each other,
might sav that this is the group formerly dencted hv D,. Another ¢
nio the simplest of all: 1 = ¢ p s conrained in 1 = Th(_ one opet

T of €L onot contained in ¢ . 18 the rotation by l‘s() about the ve

axist 287 is reflection in the horizontal plane through ©. Henee ¢,
the group consisting of the identity and of the reflection in given v
in other words, the group 1o which bilateral symmetry refers.

The two wavs deseribed are the only ones by which improper rota
may be inciuded in vur groups. Henee this is the complere table
finite groups of tproper and improper) rotations:

(jn .
b’

Em (11*1,2,3 )
, D ,C. D07, (n=23, -
i, W, p: T, W, P wT.

"y

The last group W7 is made possible by the fact that the tetrahedral I
T is a subgroup of index 2 of the octahedral group 1,





