1 Exercises Math 444 Fall 2009

Though these won't be collected, you should write up solutions. Try to develop concise yet thorough arguments.

Reading

Chs. 1-4

From the text

Ch 3 Exercises 4 **Ch 4** Exercises 5, 6, 7

1.1 Modular number systems

Take the positive integer n and consider two integers to be the same if they have the same remainder when divided by n. For example, let n = 3, then $1, 4, 7, \ldots, 3k + 1$ are *equivalent*.

- 1) Show that this way of identifying numbers is an equivalence relation on the integers \mathbf{Z} . The set of *n* equivalence classes is called \mathbf{Z}_n , the "integers mod *n*."
- 2) Define "addition mod n" in the obvious way—taking the remainder of the sum. Show that \mathbf{Z}_n is a group under addition mod n. When does \mathbf{Z}_n have proper subgroups?
- 3) Define "multiplication mod n" in the obvious way—taking the remainder of the product.
 - a) Is $\mathbb{Z}_3 \{0\}$ a group under multiplication mod n? Show that it is or isn't.
 - b) Is $\mathbf{Z}_4 \{0\}$ a group under multiplication mod n?
 - c) What about $\mathbf{Z}_5 \{0\}$? $\mathbf{Z}_6 \{0\}$? What's the tricky issue here?
 - d) When is $\mathbf{Z}_n \{0\}$ a group under multiplication? Proof?

1.2 Reflection-rotation relations

Let R and M be rotational and reflective symmetries of a plane figure \mathcal{F} respectively. Assume that \mathcal{F} is *finite*; that is, \mathcal{F} can be enclosed in a circle.

1) Give a geometric condition on R, M, and \mathcal{F} that determines whether or not R and M commute. That is, under what conditions do we get

$$MRM = R?$$

Hint: Since \mathcal{F} is finite, what can you say about the center of R and the mirror of M?

2) Give a geometric condition that yields

$$RMR = M.$$

3) What happens in these cases if you don't assume that \mathcal{F} is finite?

1.3 Double triangular pyramid

Consider two regular tetrahedra that are glued together at a face. They form a 6-faced polyhedron—call it P.

- 1) What are the **special points** on P?
- 2) Describe the group \mathcal{R} of **rotational symmetries** of P. What's the order of the group? Is this a familiar group? (That is, have we seen it before?) List all of the subgroups of \mathcal{R} .
- 3) Describe P's group S of symmetries generated by reflections. What's the order of the group? What about subgroups?

Class presentations (28/30 Sep)

- 1) **1.1:** 1, 2, 3(a,b)
- 2) **1.2:** 1
- 3) **1.3:** 1, 2